Tenascin and extracellular matrix glycoproteins: from promotion to polarization of neurite growth in vitro.

نویسندگان

  • A Lochter
  • M Schachner
چکیده

The extracellular matrix molecules tenascin, laminin, and fibronectin, the cell adhesion molecule L1, and the lectin concanavalin A (ConA) were tested for their effects on neuritogenesis in cultures of hippocampal neurons. We analyzed neurite outgrowth between 3 and 21 hr after plating and found that, on polyornithine as control substrate, lengths of axon-like major neurites and dendrite-like minor neurites increased continuously with time in culture. Moreover, growth of minor neurites was faster than growth of major neurites. When the extracellular matrix molecules tenascin, laminin, and fibronectin were coated on polyornithine substrates, growth of all neurites was faster than on control substrates during the first hours of culture. After this initial phase of enhanced neurite outgrowth, elongation of major neurites continued at a higher rate than on the control substrate and growth of minor neurites ceased after 12 hr. Correspondingly, neuronal polarity was strongly increased on the extracellular matrix substrates during later phases of culture. In contrast, lengths of both major and minor neurites were increased over control values on L1 and ConA substrates at all time points investigated. Thus, neuronal polarity was similar for control, L1, and ConA substrates. Spreading of neuronal cell bodies was reduced by about 50% on tenascin, laminin, and fibronectin and by less than 20% on L1 and ConA substrates after 21 hr of culture, when compared to the control substrate. Neuron-to-substrate adhesion was reduced on all three extracellular matrix substrates but not affected on L1 or ConA substrates, after 3 and 21 hr of culture. These observations indicate that induction of neuronal polarity is not a general feature of neurite outgrowth-promoting molecules, such as L1 or ConA, but a distinctive property of the three extracellular matrix glycoproteins studied, and may suggest that enhancement of polarity is correlated with decreased strength of adhesion.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dual function of tenascin: simultaneous promotion of neurite growth and inhibition of glial migration.

The extracellular matrix molecule tenascin is expressed within the developing peripheral nervous system, first by migrating neural crest cells and later by satellite (Schwann precursor) cells at the growing tips of peripheral nerves. Here we found that the neurite promoting activity of tenascin for sensory neurons is developmentally regulated: very young sensory ganglia of stage 23 (4 days old)...

متن کامل

Tenascin-R (J1 160/180 inhibits fibronectin-mediated cell adhesion--functional relatedness to tenascin-C.

Cell adhesion and neurite outgrowth on fibronectin is a multistep process modulated by different extra- and intracellular signals. Fibronectin-mediated cell attachment and spreading can be affected in a negative way by tenascin-C, an extracellular matrix glycoprotein expressed in a temporally and spacially restricted manner during early morphogenesis. Tenascin-R (J1-160/180), consisting of two ...

متن کامل

Identification of a neurite outgrowth-promoting motif within the alternatively spliced region of human tenascin-C.

Our work centers on understanding how the extracellular matrix molecule tenascin-C regulates neuronal growth. We have found that the region of tenascin-C containing only alternately spliced fibronectin type-III repeat D, called fnD, when used by itself, dramatically increases neurite outgrowth in culture. We used overlapping synthetic peptides to localize the neurite outgrowth-promoting site wi...

متن کامل

CALEB binds via its acidic stretch to the fibrinogen-like domain of tenascin-C or tenascin-R and its expression is dynamically regulated after optic nerve lesion.

Recently, we described a novel chick neural transmembrane glycoprotein, which interacts with the extracellular matrix proteins tenascin-C and tenascin-R. This protein, termed CALEB, contains an epidermal growth factor-like domain and appears to be a novel member of the epidermal growth factor family of growth and differentiation factors. Here we analyze the interaction between CALEB and tenasci...

متن کامل

Tenascin is accumulated along developing peripheral nerves and allows neurite outgrowth in vitro.

The extracellular matrix protein, tenascin, appears in a restricted pattern during organ morphogenesis. Here we studied the expression of tenascin along developing peripheral nerves in chick embryos and tested its activity as a substrate for cultured neurons. Motor axons grow out through the tenascin-rich, anterior part of the sclerotome. Shortly after, tenascin surrounds axon fascicles of vent...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 13 9  شماره 

صفحات  -

تاریخ انتشار 1993